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Abstract

We consider the use of an auction as a decentralized mechanism
for efficiently and fairly sharing resources in a network. We present
a new auction rule called Progressive Second Price, and prove that it
has a “truthful” Nash equilibrium. We give necessary conditions for
the resulting allocations to be fair (envy-free), and demonstrate that,
with a large population of small users, the allocations are increasingly
efficient when total demand exceeds supply. We also present an algo-
rithm extending the auction to a network of resources, and show that
in the case of a tree topology, the efficiency of the allocations is pre-
served. This work is applicable, for example, in joint admission control
and pricing on a network where users may request different, arbitrary
levels of quality of service.



1 Introduction

Resource allocation is among the most keenly debated and least understood
issues in networking today. While it is widely believed that pricing plays a
determining role in achieving desirable uses of resources, in reality commer-
cial Internet service providers, on-line services, and even telephone compa-
nies are struggling to develop pricing policies that satisfy their customers’
changing needs and demands, and result in efficient use of resources. The
centralized policies of the single service world of traditional telephony are
inadequate in packet switched multiservice integrated networks where the
demands range over wide quantitative and qualitative ranges. Here, “given
that applications have very different sensitivities to service quality, it seems
preferable to place the bulk of the variability where it can be done in the
most informed way.” [13]

Rather than trying to centrally and explicitly compute prices which
achieve some system wide objective, auctions decentralize the decision mak-
ing, in that prices emerge from the users’ valuations of (and willingness to
pay for) resources. The motivation for auctions is that one can obtain better
allocations because, a careful design of the auction rules can leverage the
collective “intelligence” of the users into a result greater than that of a cen-
tralized system. A centralized! pricing policy in reality leads to somewhat
arbitrarily set prices. This is because there are a number of fundamental
barriers to an optimal centralized approach. First, the policy maker would
have to know the preferences of the different users in terms of resources. The
relationship between preceived quality of service and allocated resources can
be very different for different users, so the policy necessarily assumes that
users are cooperative in announcing them truthfuly or that they are some-
how known. Second, it assumes that it is possible and computationally
scalable to objectively compare and optimally trade-off users’ utilities in a
centralized way. These are at best naive, if not invalid, assumptions, in
a multiservice, multimedia network. The recognition of similar realities in
many aspects of networks and distributed computations has lead in recent
years to the emergence of game theoretic approaches in the analysis and
design of these systems [8, 12, 4].

!By centralized, we mean that the relationship between demand and price is decided
by an a-priori formula, even if the actual price levels may vary according to demand — e.g.
time-of-day pricing in the telephone network. In an auction, the policy is decentralized
in the sense that a given demand may lead to different prices depending on the users
valuation of the resources and their bidding strategies.



In this paper, we introduce and analyse an auction rule for resource
sharing, whose design is guided by the basic principles of automated agent
mechanism design: stability, simplicity, efficiency, and fairness [10]. Our
rule is a generalization of Vickrey auctions [14] (which applies to the sale of
a single non-divisible object) to the case of shared (divisible) resources.

Auctions have been used to allocate computation and communication
resources in [1, 15]. A “smart market” mechanism similar to an auction is
suggested in [6] for pricing Internet service. In their approach, because the
bids are in one dimension only (price per packet), the market clearing price
has to be centrally set to equal a marginal congestion cost, which is computed
with an explicitly assumed utility function for the users. Thus, theirs is
essentially a centralized pricing policy, and is thus subject to the scalability
and “knowability” drawbacks described above. This appears unavoidable
in a pure datagram network with no notion of flows for which a specific
amount of resources can be reserved. By contrast, here, the possibility of
per-flow (or connection) resource reservation is taken as a given, so we can
make the bids two dimensional (price and quantity). Thus, a clearing price
arises directly from the bids only, and the users’ preferences are not part of
the mechanism itself.

After formaly presenting the problem in Section 2, in Section 3, we
present a new auction rule which we call Progressive Second Price, and show
that it has the desired properties of simplicity and stability (in the sense of
Nash equilibrium). With some additional assumptions on players, fairness
and efliciency are achieved. Then in Section 4, we look at combinations of
resources, e.g. paths or circuits in a network. We present an algorithm which
gives an allocation rule for multiple resources, which works by applying a
single-resource rule recursively. In the case where the set of resources (the
network) has a tree structure, if the single-resource rule is efficient, then
so is the tree rule. In addition to making fair and efficient allocations, the
mechanism is computationally efficient. For a number of users I, and a
number of resources L, the allocations are computed in time O(I?L).

The proofs of all the results are given in Appendix A.

?In our mechanism, no knowledge about the users goes into the computation of the
allocations. However, we do of course assume certains forms of the players’ utilities in the
analysis of their behaviour.



2 Formulation of an Auction for a Divisible Re-
source

Given a quantity @ of a resource, and a set of players 7 = {1,...,1},
an auction is a mechanism consisting of: 1) players sumbitting bids, i.e.
declaring their desired share of the total resource and a price they are willing
to pay for it, and 2) the auctioner allocating shares of the resource to the
players based on their bids.

2.1 Allocation Rule

Player 7’s bid is s; =l (¢i,pi) €S; = [0,Q] x [0,00), meaning he would like
a quantity ¢; at a unit price p;. A bid profile is s = (s, .. .,s?)T. The ¢-th
row of s is player ¢’s bid. Let ¢ denote the operator which extracts the first
column of its operand, i.e. ¢s = s(1,0)" = (¢1,...,q7)7, and ps is defined

similarly. Note that ¢s; = ¢; and ps; = p;.
T

Following standard game theoretic notation, let s_; = (s1,...,s7 |, s7 ...

i.e. the bid profile of player ¢’s opponents, obtained from s by deleting the
row s;. When we wish to emphasize a dependence on a particular player’s
bid s;, we will write the profile s as (s;;5-;).

The allocation is done by an allocation rule A,

A S — S
s =(gs,ps) — A(s) = (qA(s),pA(s)),

where S & [Lier S

The i-th row of A(s), A;(s) = (qAi(s), pAi(s)), is the allocation to player
i she gets a quantity ¢A;(s) at a unit price pA;(s).

An allocation rule A is feasible if Vs,

D oqAi(s) < Q
€1
A(s) < s

where < for matrices is taken element by element.
Player ¢’s preferences are given by his utility function

w: § — [0,00)

s o u(s).



An auction game is given by (Q,u1,...,ur, A), that is by completely
specifying the resource, the players, and a feasible allocation rule.

The above formulation is a generalization of what is usually meant by
auction. If the condition ¢A,(s) = @ for some winner w € 7 and ¢4;(s) =
0,Vi # w, then we get the traditonal winner-take-all type of auction, i.e. as
the sale of a single indivisible object to one buyer, for which the theory is well
developed [7, 9]. In our approach, allocations are for arbitrary shares of the
total available quantity of resource. Equivalently, one could slice the resource
into many small units, each of which is auctioned as an indivisible object.
However, that would assume either that the value of the resource to a user
is the same for each unit of resource (a considerable loss in flexibility since
one might have, for example, a user whose valuation is decreasing for each
additional unit of resource beyond a minimum quantity), or that the user
has potentially as many utility functions as there are units of resource (which
obviously is not tractable). Furthermore, in a practical implementation of
auctions for sharing a resource, a process of bidding for each individual
unit would result in a tremendous “signalling” overhead. More importantly,
since the users would be bidding on a discrete grid of quantities, the analysis
would be susceptible to being very sensitive to the choice of a particular grid

and can thus easily give misleading predictions of outcome?.

2.2 User Preferences

Since the allocation rule A is given by design, the only analytical assump-
tions we make is on the form of the players’ preferences.

We assume player i has a valuation of the resource 8; > 0 of each unit
of resource that she gets. Thus, the total value to her of her allocation is
0;qA;(s).* Thus, for a bid profile of s, under allocation rule A, player i
getting an allocation A;(s) has utility

wi(s) = 0;qA;(s) — qA;(s)pAi(s), (1)

which is simply the value of what she gets minus the cost.
In addition, we assume that the player is constrained by a budget b; > 0,
so the bid s; must lie in the set

Si(s—i) ={s; € Si + qAi(si55-i)pA;i(siss—i) < b;}. (2)

®For a more detailed discussion of this point, see [2] p. 34, and references therein.
*For full generality, the value of the allocation should be 0©i(qAi(s)), where ©; is any
positive, non-decreasing function.



We assume there always exists a player 0, whose bid is fixed at sg =
(¢so0,pso) = (Q,0p). Player 0 can be viewed as the auctioner himself. It
is natural to set 8y = 0, since the auctioner is always willing to “buy” all
of the resource from himself at a price of zero, in other words he keeps
whatever he can’t sell. However, we will assume that 6y > 0, i.e., that the
auctioner imposes a minimum unit price. This “reservation price” can be
made arbitrarily small, and can be used to model a cost-recovery requirement
on behalf of the resource controller.

3 Progressive Second Price Rule

We present a specific auction rule A which we will show achieves our design
goals. The “progressive second price” (PSP) allocation rule is defined as

follows.
_I_
gAi(s) = gsih |Q@— > qAi(s) (3)
{7:ps;>psi}
D i Psilad; (05s_i)—qA;(siss—i)] .
pAi(s) = S 2ila4; (05— =g A, (siss—i)] ifgAi(s) >0 (4)
0, if gA;(s) =0

where A means taking the minimum.
Because of player 0’s fixed bid of (@, psg), with psg > 0,

> aAi(s) = Q. (5)

and therefore, the denominator of pA;(s) is always positive whenever ¢A;(s) >
0.

The intuition behind PSP is an exclusion-compensation principle:
you pay a price per unit which is the average of all other players’ bid prices,
each weighted by how much the allocation of that player is decreased by
your bid. Equivalently, for each infinitesimal share of the resource, the
player who is getting it pays the maximum amount that the player who
is being denied it by him would have been willing to pay for it. The unit
price paid by player 7, pA;, increases with ¢A; in a manner similar to the
income tax rate in a progressive tax system. For a fixed opponent profile
$_;, imagine player ¢ is increasing ¢s;, starting from 0. The first few units



that player 7 gets will be taken away from the lowest clearing opponent (i.e.
m = argmin;{ps; : ¢A; > 0}), and player ¢ will pay ps,,. When ¢A,,
reaches 0, the subsequent units that player ¢ gets will cost him ps,,,; > ps,,,
where m’ is the new lowest clearing player, the one just above m.

The PSP rule is the natural generalization of second-price auctions (or
Vickrey auctions). In a Vickrey auction of a single non-divisible object, each
player submits a sealed bid, and the object is sold to the highest bidder at
the bid price of the second highest bidder. This is widely known to have
many the desirable properties [14, 9, 2], the most important of which is that
it has an equilibrium profile where all players bid their true valuation. As
we will presently show, this property is preserved by the PSP rule in the
more general case of sharing an arbitrarily divisible resource, and this leads
to stability (Nash equilibrium) and fairness.

The computational complexity of PSP is very low. A straightforward
implementation would at worst, sort the bids in time Ilog I, perform (3)
in linear time, and (4) can be done in time 2. Thus, the complexity of
computing the allocations is O(I?).

3.1 Equilibrium of PSP

With players as defined in Section 2.2, the PSP rule has a number of nice

properties, ultimately leading up to the existence of a fair Nash equilibrium.

. . d
Define the set of best replies to a profile s_; of opponents bids: S7(s_;) 2]

{si € Si(s=i) : wilsiisns) > wi(shisi),Vsi € Si(s_;)}. Let §%(s) &

[1; S7(s—i). A Nash equilibrium is a fixpoint of $*, i.e. a profile s* such
that s* € 57(s*,), Vi. Such a point is what is most accepted as a consistent
prediction of the actual outcome of a game, and has been repeatedly con-
firmed by experiments, as well as a wide range of theoretical approaches.
Indeed, in a dynamic game, where players recompute the best response to
the current strategy profile of their opponents, this iteration can only con-
verge to a Nash equilibrium (if it converges at all). In addition, the dominant
trend in modern game theory is the development of learning models, and
there too, it has been shown that Nash equilibria result also from rational
learning through repeated play among the same players [3]. Thus, we take
the existence of a Nash equilibrium as the definition stability.

Define the partial ordering > on S to be the usual component-wise
relation: z = (21,22) > y = (y1,92) if ©1 > @2 and y; > yz. Let
c Ay =(z1 Ay, T2 A y2).



price —— ps4

0 quantity —— gqs4

Figure 1: Utility wu4(s4) for s = (100,1), s; = (10,2), so = (20,4), s3 =
(20,7), s5 = (30,12)

The key property of PSP, the importance of which cannot be overstated,
is that a player cannot do better than simply tell the truth, i.e. set ps; = 6;.
Bidding his valuation is a dominant strategy. This is known in the economics
litterature as incentive compatibility [9].

Lemma 1 (Incentive compatibility) For each player i € T, V(s;;5-;) € S,
ui((gsi,0:);5-;) > wi(si35-5). (6)

Figure 1 shows the utility function of player 4, u4(s4), in an PSP auction
with I = 5 players, with s_, fixed, and 8, = 10. The plateaus correspond
to the points where gsq > {Q - Z{j:psj>ps4}qu(s)]+, and gA4(s) can no
longer be increased at that bid price — see (3). At bid prices psy > 65,
the utility decreases when qA4 > @) — ¢s5, because after that point, each
additional unit of resource is taken away from player 5, and thus costs ps; =
fs, which is more than 6, it’s value to player ¢. Thus, each additional unit
starts bringing negative utility. This is what discourages users from bidding
above their valuation. Lemma 1 is illustrated by the fact that for any given
quantity ¢s4, the utility u4 is maximized on the plane psy; = 6,.

The next result says that not only is the truthful strategy dominant, it
is also always feasible, and thus there is always a “truthful best-reply”. Let



7; e {si € §; : ps; = 0;}, the (unconstrained) set of player ¢’s truthful bids,

and 7 = [[; Z;. Define T;(s_;) et 7,0 Si(s=;), and T'(s) = []; Ti(s—;). Let

Ri(s_;) et 7; N S7(s_;) be the set of “truthful” best replies.

Lemma 2 (Existence of truthful best reply) For each player i € Z, Vs_; €
[T S;
Ri(s-i) # 0.

This means that, thanks to the incentive compatibility property, we can
restrict our attention to truthful strategies only, and still have feasible best
replies. This forms a proper “truthful” subgame, where the strategy space
is 7 C S, the feasible sets are T;(s_;) C S;(s—;), and the best replies are
R(s) C S*(s). A fixpoint of R in 7 is a fixpoint of $* in §. Thus an
equilibrium of the subgame is an equilibrium of the whole game.

Though w; is neither continuous nor concave on S (see Figure 1), its
restriction to 7 is continuous in s and concave in s;. This makes the subgame
a convex game for which the methodology for establishing equilibria is well-
known [2].

Proposition 1 (Nash equilibrium) In the auction game with the PSP rule
given by (3) and (4), and players with utilities of the form (1), there exists
a Nash equilibrium s* € 7.

Even if one or any group of players are non-reactive to the others, the
remaining players still have a Nash equilibirum. This is not surprising, since,
in establishing Proposition 1, no assumption was made on the number of
players or the amount ) of resources. This robustness characteristic of the
stability of the mechanism is important for practical implementations of
our auction in distributed systems where variable latencies may cause some
players to react more slowly than others.

Corollary 1 Suppose a player m € T fixes his bid at o, € S,,,. Then, for
the remaining players, the game has a Nash equilibrium o*, € 7_,,.
3.2 Equilibrium Properties: Fairness and Efficiency

Fairness can be defined in a number of ways, the most intuitively appealing
of which is the notion of an “envy-free” allocation [12]. An allocation A(s)
is said to be envy-free if Vi, 5 € Z,

ui(Ai(s)) > ui(A;j(s)). (7)
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Figure 2: Examples of unfair (top) and fair (bottom) equilibrium

The next result provides a simple fairness test. It gives suflicient con-
ditions, based only on the players’ characterstics (b and 6) and the total
amount of resource (), which are all known a-priori.

To simplify notation, assume without loss of generality that 6y < ... <
0; < 0,41 < ...< 0. Thus, the equilibrium bid prices satisfy psg < ... <
psy <psipq < ... < psy
Proposition 2 (Fairness) If 3m € T such that
b; b b;
_J moos _J
2 ta 29 L (8)
J>m i>m
and, Yi > m,
b; 0; — 0, b
L — > 9
E 0 +02—0m_10m_Q’ (9)

then there exists an equilibrium s* € T such that the allocation A(s*) is fair.

Figure 2 shows the equilibrium outcomes from the auction game being
played on a distributed inter-active implementation on the World Wide Web
in the Java programming language®. The outcomes illustrate Proposition 2,

®This paper has a companion web page [11], where a Java applet acting as a bidding
agent enables anyone to play the auction against others interactively over the Internet.
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for ¢) = 100, and 8y = 0.5. In the first scenario (top), there are two players
with valuations of 6; = 3.28 and 6; = 4.4, and budgets of by = by = 100,
and @) = 100. Neither (8) nor (9) is satisfied, and the allocation turns out
to be unfair: clearly player 2 will envy player 1, since 1 pays a higher price
pAi(s) > pAa(s), and gets a smaller quantity ¢A;(s) < gAz(s). In the
second scenario, a third player is added so that ¢; = 2.54, 6; = 3.28 and
65 = 4.4, and by = by = b3 = 100. Both (8) and (9) are satisfied, and the
allocation is fair.

The first condition (8) is increasingly likely to be satified, as the “de-
mand” of an individual player becomes smaller relative to the total amount
of resource (). Indeed, if b;/6; < @, Vi,j, then (8) is approximately the
same as EjZm ;—jﬂ >0 > ism ;—:1, which is necessarily true for some m.

An efficiency measure for an allocation rule is a function of the form

m(A(s)) = D mi(Ai(s)). (10)

€1

An allocation rule A is m-efficient at s if m(A(s)) > m(A'(s)) for all feasible
A'. For example, as a user-centric measure of efficiency, one may take the
sum of the utilities of the players > u;(A;(s)), in which case m-efficiency is
equivalent to Pareto optimality. In the case of auctions, the most common
measure of efficiency is the seller’s revenue, which here is > q¢A4;(s)pA;(s).
Even if the objective is not to raise money, it is natural for the designer to
seek to get the most “value” from the given amount of resource ¢). Thus we
will focus on efficiency as measured by revenue.

Although ideally we would like A to be efficient at all s, the efliciency
will primarily be measured at Nash equilibrium profiles. Different rules will

in general lead to different equilibria. An allocation game with rule A and
equilibrium s* is efficient if m(A(s*)) > m(A'(s™)) for any A" with NE s™,
i.e. we compare the efficiency of each game’s rule at its own equilibirium®.
The highest revenue one can generate from any allocation would occur by
getting a) all the players to pay their valuation, pA;(s) = 6;, and b) getting
the most out of player I (i.e. by, which is obtained when ¢A;(s) = b;/0;),
then player I — 1, etc., until all of the resource has been sold. This would

5Note the difference between efficiency of the game, which is the equilibrium efficiency,
and the efficiency of the rule, which is at any profile s. Thus a game with rule A may
be efficient because at its NE it is better than all other games at their NE, but the
allocation rule A itself may be inefficient (less efficient than others) at non-equilibrium
points. Conversely a rule which is efficient at all s may lead to an equilibrium which is
less efficient than the equilibria reached by other rules.

11



lead to a total revenue of

max b; +0,, — b;/6; 11
S SRTACE ) (1)
which will occur for m = max,{n : @ < > .5, b:;/0;}. Clearly, the PSP
allocation rule will not achieve this, since the price paid is always strictly
less than the bid, and it is not clear that there is any rule which will achieve
it at equilibrium?. However, it is useful as a benchmark. If (8) is satisfied,
the revenue generated at the equilibrium of Proposition 2 is

Z bi+ 0,1 (Q - E bi/em) ) (12)
>m >m
(this is true even if (9) does not hold and the equilibirium is not fair —
see proof of Proposition 2 in Appendix A). But, as noted above, (8) can be
assumed to hold when the game involves large numbers of “small” players. In
thoses cases, the ratio p which we define as (12) over (11) is a good indicator
of the relative efficiency. Figure 3 plots the efliciency p versus the offered
load factor A = é >_; bi/0;. For each point on the curve, a new set of I = 200
players (large enough for the “small individual player” approximations to be
reasonable) is generated with random 6; uniformly distributed in the range
(0.5,9.5), b; = 100, Vi, and @ = 3, b;/(6:N).

As can be seen from Figure 3, the PSP rule is reasonably efficient even
for small demand, and tends to maximal efficiency as the offered load factor
(or ratio of demand to supply) gets large.

4 Auctioning on a Network

4.1 Formulation

Suppose there is a set of resources £ = {1,..., L}, of which the quantities
are Q@ = {Q',...,Q"}, and as before, a set of players T = {1,...,I}. Bids
are of the form s; = (q;, pi, 7;), where r; € {0, 1}7.

The interpretation is that the resources £ are links in a network, and s;
is a bid is for a “circuit” of bandwidth ¢; which goes on a route® given by

"In the traditional auction of an indivisble object, even first price auctions, where you
pay the price you bid, in general cannot, at equilibrium, raise higher revenues than a
second price auction [7].

8We assume initially that the allocation rule is not concerned about wether r; forms a
continuous path or not — route means any arbitray set of links.

12
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r; as follows: link [ is in player ¢’s route if and only if r;; = 1.
Let s = (r{,...,7F)T. The i-th row of rs is user i’s route r; . Then an
allocation rule F’,

F: [0,Q) x[0,00)f x {0,1}%1 —  [0,Q]! x [0
s = (gs,ps,Ts) ——  F(s)

is feasible if Vs,

qF(s)rs < @Q (13)
(¢F(s), pF(s)) < (gs,ps) (14)
rF(s) = rs. (15)

When bids are allowed for any “route” r;, an efficient feasible auction
rule is computationally hard, unlike the case of a single resource, where (3)
involves only simple arithmetic operations. The difficulty arises from the
need to avoid situations where a bidder using a single link could block a
bidder using many links. An efficient rule would be such that Vs, computing
F(s) is equivalent to solving

max m(F(s)) (16)

13



subject to (13)-(15).

This means solving a large optimization problem? just to compute an
allocation from a bid profile, which would make it impractical for, say, mak-
ing pricing and admission control decisions within a realistic call setup time.
Also, there is no guarantee that such an “optimal” rule would even be stable,
i.e. lead to a Nash equilibrium.

4.2 Sharing on a tree

If the set of resources £ has some “structure”, and we restrict bids to certain
specific subsets of resources (i.e. routes), we can devise simple rules that
are efficient. In other words, we are still solving (16), but the matrix rs is
restricted to having some special structure that makes it easy.

Consider the case when £ is the set of edges of a tree, and bids are only
allowed for routes which begin at the root of the tree and form a continuous
path to some other vertex (not necessarily a leaf). Then we can use a simple
single-resource allocation rule at each individual edge and combine them by
a dynamic programing type of algorithm to obtain an allocation rule F
which is efficient for the whole tree, and computationally simple.

Let A be some allocation rule for a single resource as in Section 2. To
distinguish which resource we are applying the rule to, we will write A(Ql, J)
instead of simply A(.) when the rule is being applied on resource [ of which
there is a quantity Q'. Also, for s = (¢s,pq,rs), by abuse of notation we
will write simply A(Ql, s) although, since the routes rs are not required for
the single-resource allocation, we should write A(Q', (¢s,ps)).

For any J C Z, let 17 be the operator which deletes all rows ¢ such that
i ¢ J, thus 17(s) is the profile of the subset of players 7.

The allocation rule F for the tree is given by the algorithm in Table 1.

The algorithm starts from the leaves, and works back toward the root,
doing an allocation for each edge using the single resource rule F, among
the subset of players whose route includes that edge. Note that, as the
algorithm backtracks along a player’s route, at step 5, his “bid” for the
next edge is automatically reduced to his actual allocation on the current
edge. Thus the allocations are decreasing, i.e. his “pipe” is “thining” as
it gets closer to the source. Since the useable “thickness” of a player’s
“pipe” is only the thickness of his thinnest link allocation, it may seem
like the downstream allocations are wasteful of resources. However, it is

°With the additional restricition that ¢Fi(s) = ¢i or 0, this optimization is in fact N-P
complete — see [5].

14



e input:
The vertices/nodes V, the edges/links £, Q = (Q',...,Q"),
s = {(gipi, )} -

o 1.
— Pick a leaf v € V; let [, € L be the (unique) edge
going into wv.
— Let ZI(l,) = {¢ € T : r;;, = 1}, the subset of players
which use link /,.
e 2. Compute s = F(Ql”,lz(zv)(s)), i.e. perform the

allocation on resource [,.

3. For each i € I(l,), set s;=s;.

e 4. Set V=V—{v}, and L=L-{l,}, i.e. delete that leaf
and that edge from the tree.

5. If L#( goto 1, else set F(s)=s and we’re done.

Table 1: Algorithm of Tree Allocation Rule

not so, because as you move closer to the root of the tree along a given
path, the set of players is increasing, so the resources that appear wasted
downstream are not wasted because there would have been no one else to
allocate them to. More precisely, if the single resource rule A is efficient,
then this algorithm consitutes an allocation rule F which is efficient for the
tree. This is expressed formally by the following result.

Proposition 3 Lel A be a single-resource allocation rule, and F the corre-
sponding Tree Allocalion Rule. Suppose A is monotone with respect to the
efficiency measure m, i.e. Vs, s

m(s) > m(s') = m(A(s)) > m(A(s)). (17)

Then, Vs,
A m-efficient at s = F m-efficient at s.

It can be shown that, with revenue as the measure of efficiency m, the
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PSP rule given in Section 3 satisfies 17, and thus is suitable for extension to
multiple resources using the tree algorithm.

4.3 Practical Considerations

Auctions, as formulated here, are applicable in a setting where the resources
are arbitrarily divisible, and these divisions enforceable. Thus, this approach
would fit particularly well in a system where arbitrary amounts of resources
can be requested and obtained, rather than systems with a small fixed menu
of service classes to choose from. In the jargon of network engineering,
this translates to user controlled quality of service, plus packet scheduling
algorithms which can assign and guarantee an arbitrary share of, say, the
bandwidth to each individual flow.

It is natural to assume that bidding would be on a per flow basis, or
per unit time on an appropriate time scale. Not only is active bidding on
the time scale of packets probably not feasible, but the relationship between
the resource allocation of a single packet and the user-perceived quality of
service is a daunting, if not impossible, thing to estimate [13]. On the flow
or call level though, this is certainly possible, particularly if the “user” is
a software bidding agent, possibly embedded into the applications, which
develops over time and with human feedback, an accurate relationship ©
translating resources into value or perceived QoS.

5 Conclusion

Auctions are one of oldest surviving classes of economic insti-
tutions [...] As impressive as the historical longevity is the re-
markable range of situations in which they are currenlty used.

[7]

Though the most natural application of an auction mechanism would be
for pricing, it is not necessarily the only one. Auctions can also be used
in an environment where there is no “real money” involved (such as a
non-commercial network, or a corporate intranet) with fictitious budgets
of “funny money” assigned to many intelligent agents according to the im-
portance of their tasks, and using the auction mechanism as a means for
these tasks to share resources without central control.

We proposed the progressive second price auction, a new auction which
generalizes key properties of traditional single non-divisible object auctions
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to the case where an arbitrarily divisible resource is to be shared. We have
shown that our auction rule, assuming a flexible and intuitive model of
user preferences, constitutes a stable resource allocation mechanism. We
presented some sufficient conditions for the equilibrium allocations to be
rigorously fair, and illustrated how the allocations tend to optimal efficiency
with increasing load. We have presented an algorithm for applying an auc-
tion mechanism on a network of resources, and in the particular case of
a tree topology, showed that the efficiency is perserved. Even thoug we
are motivated by problems of bandwidth and buffer space reservation in a
communication network, the auction was formulated in a manner which is
generic enough for use in a wide range of situations,

Directions for future analytical work on the basic mechanism include
finding weaker conditions for fairness, as well as considering off equilibrium
play, learning strategies, and evolutionary behaviour which can emerge from
repeated inter-action between the same players. Much of the intuition be-
hind the mechanism design and the analysis in this work came from exper-
iments done on an inter-active distributed implementation of this auction
game on the World Wide Web, using the Java programming language [11].
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A Proofs

We begin by stating some very basic properties of the the PSP rule given

by (3), (4).
Lemma 3 For each player i, Vs,s' € S,

s; <spo= qA(siss—i) < qAi(sis—g)

and pA;(si;s_;) < pAi(sh;s_i), (18)
s_ <sby = qAi(sissg) > qAi(sissty)
and pAi(si;s-i) < pAi(si;sLy). (19)
Also,
s; < S;- € SZ'(S_Z') = §; € SZ'(S_Z'), (20)
s—; <8, = 8i(smi) D Si(shy). (21)

Proof: All the assertions can be derived by straightforward manipulations from
the definitions (3), (4) and (2). O

Now, we give the formula for the “derivative” of a player’s utility with
respect to his own bid (for a fixed opponent profile), which we will use in
all subsequent results.

Lemma 4 (Derivative) For all profiles s_; € S_;, Vst € S;,
wi(shis_i) —wi(si;s_i) = Y _(0: — ps;) [qA;(sis5-5) — qA (sl s-5)] . (22)
J#i
Proof: It can be easily seen from (5) that

qAi(s) =D [aAj(055-:) — qA;(si35-5)], (23)
i

which is also intuitively clear'®. Thus, substituting (4) and (23) into (1), we get

wi(si;s—i) = 00y [445(0;5-3) = qAj(siss-i)]=Y_ psj [a45(0;5-4) — gAj(sis5-5)].
i#i i#i

%Whatever player ¢ gets is “taken away” from some other players who would would have
gotten it if player ¢ was not there. Note that if there is no player 0, who is always willing
to take up to @, (23) has an extra term on the right hand side, (Q — E]# 4;)T Agsi, to
account for the possible “leftover” that player ¢ could get without taking anything away
from the others.

19



Subtracting the analogous expression for u;(s};s_;) from this last equation gives
the desired the result. ad

Next is the incentive compatibility property of Lemma 1, which we repeat
here for convenience.

Lemma 5 (Incentive compatibility) For each player i € T, V(s;;5-;) € S,
ui((qsi,0i);8-0) > ui(si58-4). (24)
Proof: From Lemma 4,

wil(gsi, 0:);5—i) = wils) + >_(6: — psj) (g4 (si35-5) — g A; (g5, 0:); 5-4)] -
J#e

If ps; < 6;, then from (19) it follows that ¢A;(si;s_;) — ¢A;((gs4,6:);5-4) > 0
for all j. It is clear from (3) that the quantity ¢A; allocated to the opponents
whose bids remain above or below the bid price of player ¢ remain unchanged. In
particular, ¢A;(s;;s—;) — qA;((¢si, 0;);5—s) = 0 for all j such that ps; > 6;. Thus,
the terms in the summation are all > 0.

Similarly, if ps; > 0;, then qA;(s;;5_;) — qA;((gsi,6;);s-;) <0 for all j, and in
particular, = 0 for j such that ps; < ;. Thus, the terms in the summation are all
> 0. a

We now repeat and prove Lemma 2.

Lemma 6 (Existence of truthful best reply) For each player i € 7, Vs_; €
Hj;éi Sj
Ri(s-i) # 0.

Proof: Fix s_; € Hj# 8. Now (0,p;) € Si(s—;) for any p; > 0, therefore
Si(s—i) # 0, hence Sf(s_;) # 0. Pick any s; € S} (s_;).

As shorthand notation, let u;(.) = u;(.;5-4), ¢Ai(.) = ¢A4;(.;5-;), and pA; () =
pAi(55-i).

o 1f0; < ps;, then by (18), 0 < qA;((gsi,0;)) < qAi(s;) and 0 < pA;((gsi, 0;))

pA;(s;), hence

qAi((gsi,0:))pAi((gsi,0:)) < qAi(si)pAi(si) < b;.

Therefore, (¢s;,6;) € Si(s—;), and by Lemma 1, (gs;,6;) € S{(s_;). Now
trivially, (¢s;,6;) € T;, therefore (g¢s;, 0;) € Ri(s—;).

o If 0; > psi, let q; = qAi(s;). From (18), ¢; > ¢Ai((4;,0:)) > qAi((q;, psi)) =
q;. Therefore, we have equality throughout, and ¢A4;((¢}, 0;)) = ¢A4;(s;). Thus

IN
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ui((¢}, psi)) = ui(s;). Using Lemma 1, we get u;((q},0;)) > wi((¢},psi)) =
ui(s;), that is,

0:qAi (47, 0:)) — qAi((q;, 05))pAi((gi, 0:)) > OsqAi(si) — qAi(si)pAi(si),
which implies,

qAi((g;,0:))pAi((g], 0:)) < qAi(si)pAi(si) < by,
where the last inequality is from the fact that s; € S;(s—;). Therefore,

(¢,0;) € Si(s—;), and by Lemma 1, (¢}, 6;) € S;(s—;). Now trivially, (¢},0;) €
7, therefore (¢;,6;) € Ri(s—;).

Thus, R;(s—;) # 0, which completes the proof. |

Before proceeding to the main result, we need to verify that key rather
technical conditions are satisfied by the game we have defined. The reader
will note in the proof of Lemma 7 that we will assume that player 0, the
auctioner, bids a strictly positive (but possibly very small) price psyg >
0 for the whole quantity ¢). This in effect amounts to imposing a small
minimum price (or “reservation fee”) on each unit of resource. Lemma 7
and Proposition 1 show that this is sufficient to ensure the existence of an
equilibrium. Though we have not yet proved this, from some preliminary
studies, we conjecture that this “reservation fee” is a necessary condition for
an equilibriumto exist.

Lemma 7 (Continuity properties) In the subgame with strategy space T,
for each player i, the utility function wu; is concave in s;, continuous in s,
and has a continuous mazximum, i.e.
wis T, — [0, 00)

S uf(s—;) = max, ery(s_;) Wi T 5-i)

15 continuous.

Proof: From Lemma 4,
ui(s) = Y (05 — psj) [gA;(0;5-5) — g Aj(si5-0)].
J#i
From (3), with ps fixed, ¢A; is continuous in ¢s. Therefore u is continuous in s
on 7.
Now we fix s_; € Hjﬁ 7;, we will show that u; is concave in s; on 7;. Recall
that s; € 7; = ps; = 0;, therefore we need only show that u; is concave in ¢s;. Let

Qi=Q— > sk

psk>ps; ki
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the “leftovers” after those who bid higher than ps; (except player i) have been
served. For convenience, define the labels {(0) = 0, and

l(n) = arg

min PSk,
kg{i(1),1(2),....l(n—1)}
for 0 < n < I. This is simply a relabeling of the players so that: psi,) < psi(nt1),
and Qin) < Qing1), 0 < n < . In other words, I(n) = j means ps; is the n-th
lowest bid price. Let m = min{n # i : Qi) > 0}, the lowest player'! who can get
a non-zero allocation. Let M = [7!(i) — 1, the highest player just below player i.
Now (4) can be written as:

PSi(m) if 0 < gsi < Qiim)
o= [Psim) Quem) + Psicmt1) (455 — Qum))] if Qiim) < 951 < Qiim+1)
pAi(s) = e S1tm) Quimy + PSitm ma1) + - .
a8 [Psicm Qicm) p tm+1) Qum41) i Quar—1) < g5i < Quany
) +psiany (458 — Quar—1))]
Tony [PSI(m)QJ(m) + PSiim+1) Qiim1) + - - - it Quar) < s
+psiany (Quiary — Quar—1))] ’

and (3) as
qsi if 0 < ¢si < Qi
Ai(s) = .
eAi(s) { Quary I Quary < gsi-
Substituting into the definition of the utility (1) and differentiating with respect to
qs;, we get

0; — pSi(m) i 0 < gsi < Quim)
p 0i — psim+1) I Qum) < 48i < Quim+1)
Uj .

d(gsi) | .
0 —psiary I Qur—1) < 48 < Qumn)
0 if QZ(M) < q8;.

Since psin) < psint1) < psi = i, and Qyny < Qing1), 0 < n < I, du;/d(gs;) is
decreasing but non-negative, i.e. u; is concave and non-decreasing in g¢s; on
7;. In particular, we see that u; will reach it’s maximum for all points gs; > Q).

Now consider the constraint set: T;(s_;) = {s; € T; : ¢A;(si;5-:)pAi(si;5-;) <
bi}. Let B(s—;) = qAi((Quany, 0i), 5-i)pAi((Queary, 0i), 5-4).

o If B(s_;) < b;, then (Quary,0:) € Ti(s—;) and

uj (s—;) = . El%l?f_ )Ui(T’z’; s_i) = wi((Quar), 0i); 5-:). (25)

Since Q;(M) is a continuous function of s_; € 7_; (as are indeed all @Q;),
uf(s—;) is continuous on {s_; € 7_; : B(s_;) < b;}.

1By “lowest player”, we mean the player with the lowest bid price.
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o If B(s_;) > b;, then (Quur),0:) & Ti(s—i), and since by (18) ¢A; and pA;
are both non-decreasing in s;, we have for any s; € 7;, ¢5; > Qum) = 8i &
Ti(s—;), i.e. Ti(s—i) C [0,Quan)] x {0:}. But on that set, ¢A;(s) = g¢s; is
strictly increasing, pA; is positive non-decreasing, and both are continuous,
therefore the product ¢A;pA;(.; s—;) is strictly increasing and continuous. In
fact, it’s derivative is

DSi(m) i 0 < gsi < Qim)
d(qAipA;) ) Psintny 1 Quemy < 430 < Qi)
d(gsi)
psiney U Quar—1y < gsi < Qi

which is always > psg > 0. Thus the inverse function (gA;pA;(s_;))71(.)

is well-defined, continuous and increasing as a function on [0, B(s_;)] to
[0, Queany), and Ti(s—;) = (gAipAi(s—i))~ ([0, bi]).

Now define ¢["**(s_;) = sup T;(s—;). Since T;(s_;) is compact, (¢/*** (s—;),0;) =
maxT;(s_;) = (qA;pA;i(s—;))~1(b;). We claim ¢/ (.) is continuous at all
s_; in its domain {s_; € 7_; : B(s—;) > b;}. Suppose the contrary, i.e.
Jde > 0,V6 > 0,3s’_; such that ||s_; —s' ;|| < § and |¢[**"(s;) — ¢**"(s5)| > .
Then, by the fundamental theorem of calculus,

lgAipAi(q]** (s=s),5";) — qAipAi(¢]*** (s_;), s_;)| > epso.

Now since ¢A;pA; (¢l (s";),s";) = b; = ¢A;pA;(¢*(s_;), s_;), we have

i —1i i
lgAipAi(q]" " (i), s-;) — qAipAi(q]" " (s—i), 5-:)| > €pso.
Since ¢A;pA; is continuous in it’s second argument, we can pick é > 0 small

enough that |¢A;pA;(¢7 (s—;), s ;) —qAipAi(¢7*"(s—-;),5-4)| < epsg. Thus

we have the desired contradiction, which means ¢***(.) is continuous.

2
ince w; 1s 1ncreasing in ¢s;, 1t’s maximum in 1'(s_;) will be achieved a
S , 1t T 1Ib hieved at

g™ (s_;). Thus

ui(s-i) = Jnax. )ui(T’z’; s—i) = wi((q" " (s=4), 0:); 5-4), (26)

is continuous on {s_; € 7_; : B(s_;) > b; }.
Now, we “stitch” (25) and (26) together, and verify that continuity holds across
the boundary {s_; € 7_; : B(s—;) = b;}, i.e. we want
z = limps, N5, 4 " (5-i) = Quar)
Since (g™ (s_;),0;) = (qA;pA;(s_;))~1(b;) is continuous on {s_; € 7_; : B(s_;) >

b; }, we have

(2,0;) = limpg,)~s, (qAipAi(s—i)) " (B(s:), 0;)
(Quary, 0:).
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where the last line follows from the definition B(s_;) = qA;pA;i((Qur), 0:),5-:).
Thus u] is continuous at all s_; € 7;. O
The main result of Section 3 is Proposition 1, which is the following.

Proposition 4 (Nash equilibrium) In the auction game with the PSP rule
given by (3) and (4), and players with utilities of the form (1), there exists
a Nash equilibrium s* € T .

Proof: First we verify that R(.) has a closed graph: if (s(n),t(n)) — (s,t) with
s(n) € 7 and t(n) € R(s(n)), Vn, then t € R(s). Suppose the contrary. Then, for
some ¢, t; is a sub-optimal reply to s_;, i.e.
u; (5—2') = rte%lf@(_,) ui(ri; 5—2’)
> ui(ti;s—q) = lim u(t;(n); s—i(n))

= lim max u;(t;(n); s—;(n
dim e (ti(n); s—i(n))

lim uf(s_;(n)),

which contradicts the continuity of ;.

From Lemma 2, R(s) is non-empty for all s.

Now we show that, for all s, R(s) is a convex set: if r,7/ € R(s), then given
any A € [0,1], Ar + (1 — A)r = F € R(s). By Lemma 7, for each i, u;(.,s_;) is
concave in it’s first argument, therefore

wi(Fizs—i) 2 Aug(rizs—i) + (1= Nui(ri; 5-4)
= dui(soi) + (1= Nuf(s—s) = uf(s_y)

which implies 7; € R;(s_;). Since this is true for all ¢, we have 7 € R(s).
Clearly, since T = [[,{[0, Q] x{0;}}, T is compact, convex and non-empty.
Now, by Kakutani’s fixed-point theorem (see [2]), the four statements in bold
font together imply that there exists a fixed-point s* € R(s*). ad
We now repeat and prove Corollary 1.

Corollary 2 Suppose a player m € 1T fizes his bid at any 0, € S,,. Then,
for the remaining players, the game has a Nash equilibrium o*, € T_,,.

Proof: We simply verify that each step of the proof of Proposition 1 holds for the
subset of players T — {m}, when s,, is fixed.

With s,,, fixed, u] is simply restricted to a subset of it’s domain, therefore it is
still continuous in s_;, i.e. u; has a continuous maximum.

The proof of Lemma 2 does not rely on any particular choice of s_;, thus, the
set of best replies is non-empty.

24



Finally, the concavity of u; as a function of s; € 7; does not rely on any
particular choice of s_;, so it still holds for all i € Z — {m]}.

Thus the best reply correspondence R for the subset of players Z — {m} has a
fixed-point.

To simplify notation, assume without loss of generality that 6g
0; < 0;4+1 < ...< 0. Thus, the equilibrium bid prices satisfy psg
ps; < psiy < .. < psT

INIA O

< ...
<

Proposition 5 (Fairness) If 3m € T such that

0 >Q > Z (27)

i>m i>m Orm
and, Yv > m,
i - 0m
> b+ g, b2 0nQ, (28)
8; — 8,
{j:g>m}

then there exists an equilibrium s* € T such that the allocation A(s*) is fair.

Proof: Set s, = (Q,0,,). By Corollary 1, the other players have an equilibrium
s* ., € T_p. By Lemma 1, s, is always a best reply provided it is feasible.

It is easy to see from (3) and (4) that since ¢sp, = Q, pA;i(sm;s*,,) > Om, there-
fore qAi(sm; $*,,) < b /0, Vi > m. Hence, ¢Ap(sm;s*,,) > Q— EDm b;i/0m >0,
by the second inequality of (27). But that implies pA;(sm;s*,,) < Om. Thus,
PAi(Sm;8L,,) = Om, and qAm(sm;sL,,) = Q — D4, bi/0m. Also, since sZ,, €
T_m, we have pAp, (Sm;s%,,) < 0m_1. Therefore,

pAm(Sm;S*_m)qA (Sm; ) < Om- (Q - Z bz/gm) < b,

i>m

using the first inequality of (27). Thus, s, is feasible, hence a best reply to s* .,
which means

b1/0m 01
ba/Om 02
Q@ b
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is a Nash equilibrium, yielding an allocation

by /O O
by /O O

A ) = | Q=i bi/0m Om-y |- (30)
0 0
0 0

Now, we show that A(s*) is fair (envy-free). The players j < m cannot be
envied by any other player, because A4;(s*) = (0,0).

Moreover, j < m cannot envy any other player i > m because pA;(s*) > 0, >
0j = u;(Ai(s")) <0.

Any two players 7,7’ > m cannot envy one another, because they pay the same
unit price #,, and they are all getting the maximum qA; for their budget.

Can m envy a player i > m? No, because pA;(s*) = 0y = um(Ai(s*)) = 0.
Can ¢ > m envy m? No because, from (28),

b; 0; — 0, b
gm Hi_gm—l m
{j:g>m}

NS > Hb— (0 = Om—1)

O

Proposition 6 Let A be a single-resource allocation rule, and F' the corre-
sponding Tree Allocalion Rule. Suppose A is monotone with respect to the
efficiency measure m, i.e. Vs, s

m(s) > m(s') = m(A(s)) > m(A(s")). (31)

Then, Vs,
A m-efficient at s = F m-efficient at s.
Proof: Fix s. We proceed by induction on the depth of the tree d. For d = 1, we

have simply L resources with disjoint sets of players. The constraint ¢F(s)r(s) <
() has decoupled columns, i.e. it can be written as L independent constraints

Yiez(y eFi(s) < Q' Thus

m(F(s) =Y mi(Fi(s)) =>_ > mi(Fi(s)),

ieT leC ieZ(l)
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is maximized iff each of the L terms } 7,7y mi(Fi(s))) is independently maximized.

Now since a player i will go through one allocation only, Fi(s) = A;(Q', Lzy(s)),

and

> omiFi(9) = Y mi(AlQ', 1za)(s)) = m(AQ", 1z(1)(5)))-

i€Z(l) ieZ(l)
Since A is m-efficient at s, the above expression is maximal for each [, therefore
m(F(s)) is maximized, i.e. F' is m-efficient.

Now suppose the result holds for all trees of depth < d. Let F’ be any feasible
allocation rule on the tree of depth d. We will show that that m(F(s)) > m(F'(s)).
Let £' = { depth 1 edges }, i.e. all the edges going out of the root. We can decouple
the problem into |£!| independent subtrees. Each player only uses one of the links

in £!, so
m(F(s) =Y > mi(Fi(s))

€LY ieZ(l)

is maximized iff each of the |£!| terms of the outer sum is independently maximized.
Pick I € £'. Let v be the vertex at the head of . Let F(v,.) denote the tree
allocation rule F'(.) applied to the subtree rooted at v. From the algorithm, it is
easy to see that Fy(s) = A;(Q', F(v,17(1y(s))). Therefore

m(F(s) = Y m(AQ", F(v, 1z4(s)))). (32)

leLt

Now
m(F'(s)) = Y Y mi(F{(s)) = Y m(lzy(£'(5))). (33)
le £t ieZ(l) lect
Since by the induction hypothesis, F' is m-efficient on the tree of depth < d rooted
at v, m(F'(v, 1z(1)(s))) > m(1zyF'(s)), i.e. the whole-tree allocation rule /' cannot
beat the subtree-efficient rule F(v,.) on the subtree. Therefore, by the monotonicity
property (31), we have

m(AQ", F(v,1201)(5)))) m(A(Q', 1) F'(s))) (34)

>
> m(lz(F'(s))), (35)

where (35) follows from the fact that F' being m-efficient it beats in particular the
identity allocation Id(s) = s, which is feasible in this case. Now, combining (32),

(33) and (35), we get m(F(s)) > m(F'(s)). O
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